45 research outputs found

    Chlamydial Pre-Infection Protects From Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singlyinfected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans

    Octanoic Acid Suppresses Harmaline-Induced Tremor in Mouse Model of Essential Tremor

    No full text
    Recent work exploring the use of high-molecular weight alcohols to treat essential tremor (ET) has identified octanoic acid as a potential novel tremor-suppressing agent. We used an established harmaline-based mouse model of ET to compare tremor suppression by 1-octanol and octanoic acid. The dose-related effect on digitized motion power within the tremor bandwidth as a fraction of overall motion power was analyzed. Both 1-octanol and octanoic acid provided significant reductions in harmaline tremor. An 8-carbon alkyl alcohol and carboxylic acid each suppress tremor in a pre-clinical mouse model of ET. Further studies are warranted to determine the safety and efficacy of such agents in humans with ET. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-012-0121-1) contains supplementary material, which is available to authorized users
    corecore